
Biotic and abiotic variables show little redundancy in explaining tree
species distributions

Eliane S. Meier, Felix Kienast, Peter B. Pearman, Jens-Christian Svenning, Wilfried Thuiller,
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Abiotic factors such as climate and soil determine the species fundamental niche, which is further constrained by biotic
interactions such as interspecific competition. To parameterize this realized niche, species distribution models (SDMs)
most often relate species occurrence data to abiotic variables, but few SDM studies include biotic predictors to help
explain species distributions. Therefore, most predictions of species distributions under future climates assume implicitly
that biotic interactions remain constant or exert only minor influence on large-scale spatial distributions, which is also
largely expected for species with high competitive ability. We examined the extent to which variance explained by SDMs
can be attributed to abiotic or biotic predictors and how this depends on species traits. We fit generalized linear models
for 11 common tree species in Switzerland using three different sets of predictor variables: biotic, abiotic, and the
combination of both sets. We used variance partitioning to estimate the proportion of the variance explained by biotic
and abiotic predictors, jointly and independently. Inclusion of biotic predictors improved the SDMs substantially. The
joint contribution of biotic and abiotic predictors to explained deviance was relatively small (�9%) compared to the
contribution of each predictor set individually (�20% each), indicating that the additional information on the realized
niche brought by adding other species as predictors was largely independent of the abiotic (topo-climatic) predictors. The
influence of biotic predictors was relatively high for species preferably growing under low disturbance and low abiotic
stress, species with long seed dispersal distances, species with high shade tolerance as juveniles and adults, and species that
occur frequently and are dominant across the landscape. The influence of biotic variables on SDM performance indicates
that community composition and other local biotic factors or abiotic processes not included in the abiotic predictors
strongly influence prediction of species distributions. Improved prediction of species’ potential distributions in future
climates and communities may assist strategies for sustainable forest management.

Effective nature management in the face of anthropogenic
climate change challenges ecologists to improve predictions
of how species distributions might respond to altered
climate. Predictions of these responses are often generated
with species distribution models (SDMs, Guisan and
Zimmermann 2000, Guisan and Thuiller 2005, Elith
et al. 2006). SDMs most often relate presence/absence or
abundance of species to abiotic variables such as climatic,
topographic or edaphic factors, and are used to assess factors
that potentially control species distributions and to predict
the distribution of suitable habitat of species. Nonetheless,
biotic interactions such as competition, mutualism, amens-
alism or commensalism also affect species distributions, in
addition to the effects of abiotic factors (Connell 1961,
Loehle 1998, Soberón 2007). The relative importance of

abiotic and biotic range determinants remains unclear. The
tendency to omit biotic variables from models when
predicting the effects of climate change does not eliminate
the potential effects of biotic processes and adds an
unknown amount of uncertainty to models used to predict
climate change effect. Thus, we need to determine whether
inclusion of biotic predictors can reduce uncertainty in
models that are used to predict climate change impacts.

It remains unresolved whether SDMs can help to
distinguish between environmental/physiological constraints
that make up the fundamental niche and the biotic
interactions that constrain species to occur within their
realized niches (Hutchinson 1957). The relative importance
of biotic and abiotic influences on species distributions has
generated a variety of opinions. Some authors argue that
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general species distribution patterns are not considerably
influenced by biotic interactions (Huntley et al. 1995,
Bakkenes et al. 2002) or only at small-scales (Pearson and
Dawson 2003, Heikkinen et al. 2007), whereas others have
argued for a strong role for biotic interactions, causing
standard SDM predictions to be incomplete at best (Davis
et al. 1998, Anderson et al. 2002, Araújo and Luoto 2007).
Negative biotic interactions are often thought to mainly
constrain species distributions at equatorial/lower limits,
while positive biotic interactions and abiotic factors are
expected being the dominant determinants of poleward/
upper range limits (MacArthur 1972, Brown et al. 1996,
Loehle 1998, Vetaas 2002, Normand et al. 2009). Further-
more, biotic interactions might lead to a high degree of
indeterminacy in species range responses to changes in the
abiotic environment (Davis et al. 1998, Case et al. 2005).
Indirect evidence of biotic interactions affecting models for
trees at the regional scale are also suggested by early-
successional species being more difficult to model than
dominant late-successional species, most likely due to the
realized niche of the former depending on the degree of range
filling of the latter (Guisan et al. 2007, Pearman et al. 2008).

Predictions for any given location or for future and past
climates are often based on the implicit assumption that
biotic interactions remain constant, or are not important
for the focal species (Guisan and Thuiller 2005). However,
over large geographic ranges biotic interactions may not
be constant, partly because of environment-dependant
competitive abilities and partly because of spatial variation
in the distribution of interacting species due to different
environmentally constraining factors or due to anthropo-
genic influences. During climate change, biotic interac-
tions may vary further, since species may shift their ranges
individually as they migrate at different speeds and/or
in differing directions (Davis and Shaw 2001, Suttle et al.
2007).

In this paper we approach the problem of identifying
potential effects of biotic interactions on current large-scale
distributions by including biotic predictors in SDMs. We
address the following questions: 1) are SDM estimates of tree
species distributions improved when data on other tree
species are explicitly included as biotic predictors alongside
abiotic (topographic and climatic) predictors? 2) What is the
magnitude of the independent and joint contributions
of abiotic and biotic predictors to reducing model variance?
3) Does the importance of biotic predictors for explaining
species distributions depend on traits of the focal species,
such as their response to disturbance and stress, seed dispersal
distance, shade tolerance, or frequency and dominance in the
landscape? In our study we examine correlations in species
occurrences, which means that we cannot evaluate the
direction of influence in interspecific interactions. Addi-
tional experiments would be required to disentangle the
direction of influence in interspecific interactions. Further,
we interpret the importance of biotic predictors on the
performance of SDMs as an indication of the relevance of
local biotic interactions (i.e. competition, mutualism,
amensalism and commensialism) or local abiotic processes
not included in the large-scale predictors for determining
species distributions.

Material and methods

Study area

The study area (45849?N-47848?N, 5857?E-10829?E) in the
central Alps encompassed 12 340 km2 of forested area, half
of which was located above 1000 m. The climate is moist
and mildly maritime north of the Alps, but dry and more
continental in the interior valleys. The Alps act as a barrier
separating the climates of southern (Mediterranean) and
central Europe (Zimmermann and Kienast 1999). Public
forest accounted for 68%, the rest being privately owned.
Two thirds of the forest are frequently managed, 18%
infrequently managed and 14% remain unmanaged (Brassel
et al. 1999). Forest management is primarily practiced at
low elevations, and selection forestry is the predominant
management scheme. Thus, no larger-scale clear-cutting
is applied, and natural regeneration is often furthered by
management activities. The major change in species
composition due to forest management is expected for
Picea abies at the cost of the otherwise dominant Fagus
sylvatica. Picea abies has its major distribution at high
elevation in the subalpine belt, but is partly planted at low
elevations on the Plateau. However, palynological studies
demonstrate, that P. abies occurs naturally at low elevations.
It has been present long before intense human activities
have occurred and under similar climatic conditions
as today (Burga 1988, Burga and Hussendorfer 2001).
A simulation of natural forest succession using a dynamic
forest succession model also reveals that P. abies is expected
to naturally occur at the Swiss Plateau (Bolliger et al. 2000).

Data sources and study species

Species data was extracted from the National Forest
Inventory of Switzerland (NFI). The database contains
data on individual trees in 200 m2 circular sample plots.
The first inventory (NFI_1, 1983�1985) was recorded on
a 1-km regular grid, while NFI_2 (1993�1995) was on a
1.4-km grid. All grid points located in forest were sampled
(Fig. 1). A total of 5236 plots were repeated during NFI_1
(n�10 419) and NFI_2 (n�6412). All trees with dia-
meters at breast height (1.37 m above the ground; DBH)
larger than 12 cm were measured for basal area.

We selected eleven target tree species out of approxi-
mately 50 common species. The selected species are
sufficiently abundant to be modeled (�100 observations),
belong to two different functional groups (broadleaved
deciduous and needleleaved evergreen), and combine to
cover the full elevation gradient available in Switzerland,
reaching from 180 m a.s.l. to the treeline situated at roughly
2450 m a.s.l. in the dry interior valleys. The seven broad-
leaved species included European beech Fagus sylvatica
sycamore Acer pseudoplatanus, European ash Fraxinus
excelsior, silver birch Betula pendula, pedunculate oak
Quercus robur, sessile oak Quercus petraea, and common
whitebeam Sorbus aria; while the four conifers included
Norway spruce Picea abies, silver fir Abies alba, Scots pine
Pinus sylvestris, and Swiss stone pine Pinus cembra. Eight of
these species were also incorporated as biotic predictors
(Table 1).
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Response variables

We analyzed two response variables: 1) presence-absence
data (PA), where presence was recorded when a tree of a
target species was present on the sample plot. This is
frequently used in studies that model species distributions.
2) Basal area (BA), the basal area of a target species as a
proportion of the total basal area recorded on the sample
plot. Since basal area is a surrogate of biomass, it can also be
used as a measure of competition in the stand (Waring and
Running 2007).

Biotic predictor variables

We evaluated three species-specific variables to describe the
influence of predictor species on the occurrence of a target
species: 1) relative abundance (AB), defined as the number
of stems of a predictor species as a proportion of total
number of stems recorded in a sample. 2) Relative
abundance of large individuals (AB_L), defined as the
number of stems of large individuals of a target species as a
proportion of the total number of stems on the sample plot.
An individual was considered large (L) if it was taller than
the median height of the target species in a stand. Height is
indicative of competitive ability for light because taller
plants shade shorter plants. Competitive advantage can

depend on relative rather than the absolute height (Falster
and Westoby 2003). 3) Total shading by large individuals
(LAI_L), defined by the cumulative leaf area index
(CumLAI ) of all large trees. Biotic predictors were all
correlatedBj0.5j.

In order to identify species heights for deriving AB_L
and LAI_L, we first estimated actual tree height (Ha; [cm])
according to Bugmann (1994):

Ha �137�b1�Da�b2�D2
a (1)

where Da [cm] is the actual diameter of the individual trees
as taken from NFI, and b1 and b2 are species-specific
parameters derived as follows (eq. 2 and 3):

b1�
2(Hmax � 137)

Dmax

(2)

b2��
b1

2 � Dmax

(3)

where Hmax is the maximum possible height of a tree species
in cm, and Dmax the maximum possible DBH (i.e. at 137
cm above ground), also in cm (Supplementary material
Appendix 1). For a target species, we first calculated median
tree height in each plot and then calculated the fraction of
individuals of the relevant predictor species larger than the

Figure 1. Distribution of study plots (circles of 200 m2 represented by black and grey dots) within the forest of the central Alps
(45849?N-47848?N, 5857?E-10829?E). Black dots represent the plots used for model calibration (n�5236), grey dots represent plots used
for external model evaluation (n�5183).
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median (AB_L). Formulas for estimating LAI_L are found
in Supplementary material Appendix 2.

Species traits

We selected several species traits to group the species
accordingly and test whether the contributions of the biotic
and abiotic sets of predictors differ as a function of species
traits. We formulate hypotheses regarding effects of biotic
variables on species that differ in their traits (Table 1, 2).
We base our hypotheses on the general expectation that
more competitive species are associated with higher effects
from biotic variables, since we cannot evaluate the direction
of the influence when using correlative methods.

CSR strategies: species were grouped according to their
strategies in response to disturbance (factors reducing
biomass) and stress (factors restricting productivity, Grime
1979). According to the stress gradient hypothesis (Bertness
and Callaway 1994) species occurring in undisturbed, low-
stress environments (C strategy) should be involved in
intense exclusionary biotic interactions (i.e. interspecific
competition) compared to species adapted to frequent
disturbances (R strategy) or high stress (S strategy) that
may be involved in mutualistic biotic interactions.
We expected exclusionary biotic interactions to be strongest
compared to other types of biotic interactions, and thus,
two groups were considered, one with species with R, S or

SR strategies and one with C strategy species. Due to
unequal number of species assigned to the two groups, the
results must be considered with care. CSR strategies were
assigned according to Brzeziecki and Kienast (1994).

Seed dispersal distances: consideration of seed dispersal
distance leads to contrasting predictions regarding the
importance of biotic predictors. On the one hand,
we expect that models for species with longer seed dispersal
distances are more influenced by biotic predictors than
models for species with shorter seed dispersal distances.
Intra-specific biotic interactions with parent trees are
replaced with increased separation by interspecific interac-
tions (Howe and Smallwood 1982), resulting in increasing
contribution of biotic predictors with increasing seed
dispersal distance. On the other hand, seed dispersal is an
essential mechanism for plants to tackle temporal and
spatial habitat changes (Gleason 1926, Cain et al. 2000).
Seed dispersal distance is closely linked to successional stage
on which a species is dominant. Early-successional plant
species typically have fat tailed dispersal kernels (i.e. a larger
proportion of long-distance movements) and rapid growth
rates that enable them to respond quickly to disturbance.
Late-successional species usually demonstrate contrasting
tendencies (Tilman 1994). In the absence of disturbance
in high-resource environments, late-successional species
generally competitively exclude early-successional species
due to better resource use efficiency (Rees et al. 2001).
Accordingly, species with shorter seed dispersal distances
tend to occur in late-successional environments with strong
biotic interactions, and thus, may have models with higher
contributions of biotic predictors. However, we expect that
this effect is weak compared to the effect from the transition
from intra to interspecific interactions with distance to
parent. To examine these alternatives, we grouped species
according to Lischke et al. (2004) into species with short
seed dispersal distances (25 m) and species with long seed
dispersal distances (100�200 m).

Shade tolerance: forest succession is driven largely by
interspecific differences in shade tolerance (Kobe et al. 1995).
Shade-tolerant species are evolutionarily better adapted for
photosynthesis in low light than are shade-intolerant species

Table 2. Species traits in relation to the expected effect of biotic
predictors on species distributions. For definitions of the traits see
text.

Trait Weak effect
expected

Strong effect expected

CSR strategy R and S strategy C strategy
Seed dispersal

distance
Short distance Long distance

Shade tolerance Shade tolerant Shade intolerant
Frequency-

dominance
group

Frequent-dominant
species

Infrequent-subordinate
species

Table 1. Species traits of the selected species for modeling and analyses.

Species Number of occurrences Predictor
species

CSR strategy Seed dispersal Shade
tolerance

Freq.- domin.
group

NFI_1c NFI_1e Juv. Ad.

Abies alba 1520 1610 x CS 100 3 1 FD
Acer pseudoplatanus 752 737 x C 100 2 4 IS
Betula pendula 218 178 x R 200 7 9 ID
Fagus sylvatica 2114 2096 x CS 25 3 1 FD
Fraxinus excelsior 684 645 x C 100 4 6 ID
Picea abies 3387 3322 x CS 100 5 5 FD
Pinus cembra 123 114 S 25 6 5 ID
Pinus sylvestris 436 431 x CSR 100 7 9 ID
Quercus petraea 226 233 CS 25 6 7 ID
Quercus robur 171 159 x CS 25 7 9 IS
Sorbus aria 167 150 SR 25 6 7 IS

Notes: NFI_1c are forest plots for calibration and NFI_1e for external evaluation; seed dispersal shows the avg. seed dispersal distances [m];
predictor species (x) are species used as predictors in the models; shade tolerance of juveniles and adults indicate low values for high shade
tolerance; freq.-domin. group indicates ‘‘F’’ for species with a frequent occurring in the landscape and ‘‘I’’ for infrequent occurring species,
while ‘‘D’’ indicates high local abundance (i.e. dominant) and ‘‘S’’ low local abundance (i.e. subordinate).
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(Boardman 1977, Kobe et al. 1995). Therefore, shade-
tolerant species have an advantage over similar-sized species
during competition for moisture and nutrients (Kimmins
2004). Since the degree of shade tolerance also varies by age
(Ellenberg 1992), we tested whether models for species with
differing juvenile and adult shade tolerance are differentially
affected by biotic predictor variables. We derived species-
specific shade-tolerance values from Bugmann (1994). We
expect stronger effects for shade-intolerant species (values�
5) than for shade-tolerant (valuesB5) because species with
higher shade tolerance are unlikely outcompeted for light,
and thus, may occur in many abiotically suitable habitats. We
also expect stronger biotic effects for juveniles than for adults,
because tall adults of shade intolerant species may still reach
the canopy and thus sufficient light, which may not be the
case for juveniles.

Frequency-dominance groups: species can be classified
according their frequency in the landscape and their local
dominance (Collins et al. 1993, Zimmermann et al. 2007).
Here, we classified species as ‘‘frequent’’ when occurring in
�25% of all forest plots. Species were classified as
‘‘dominant’’ if the average relative abundance (AB) per
plot among all NFI plots was �25% in plots where the
species was present. Because frequency of occurrence of
species may depend on local abundance (Hanski 1982,
Collins et al. 1993), we predict that locally dominant
species due to their competitiveness occur more frequently
in suitable habitats than do subordinate species. Thus, we
expect greater model improvement from adding biotic
predictors to models of less dominant and less frequent
species than when modeling dominant, frequent species.
Several previous studies have indeed shown that tree species
frequency in forested landscapes increases with the key
competitive trait, shade-tolerance (Pacala et al. 1996,
Svenning et al. 2004).

Abiotic predictor variables

We chose a comprehensive set of topo-climatic variables as
abiotic predictors on the basis of their relevance to plant
physiology and for explaining spatial patterns. The topo-
climatic data were generated at a 25-m spatial resolution
following Zimmermann and Kienast (1999) and Guisan
et al. (2007). We selected only predictors with correlations
Bj0.5j to avoid problems with multicollinearity. This left
seven topo-climatic predictors: 1) degree-days with a
5.568C threshold (DDEG556, [8C�d]), 2) summer frost
frequency (SFROYY, [d]) expressing the sum of frost events
during the frost-sensitive time of the year, 3) moisture index
from March to August (MIND38, [mm d�1]) as a measure
of the water balance of an area in terms of gains from
precipitation and losses from potential evapotranspiration,
4) precipitation days (PDAY, [ndays]) as the number
of days per year with precipitation higher than 1 mm,
5) potential yearly global radiation (SRADYY, [kJ m�2 d�1])
expressing the potential amount of direct and indirect solar
energy irradiated to the surface, 6) topographic position
(TOPOS, [range]) as the difference between the average
elevation in a circular moving window applied to a 25-m
digital elevation model (DEM) and the centre cell of the

window (representing soil properties such as soil depth and
nutrient availability), and 7) slope (SLP, [8]) expressing the
slope angle in degrees derived from the DEM (subsuming
gravitational disturbance processes such as rock fall,
solifluction, and avalanches).

Data analysis

We used a variance partitioning approach (Mood 1971,
Borcard et al. 1992, Fig. 2) by fitting generalized linear
models (GLM, McCullagh and Nelder 1989) using three
different combinations of predictors for each tree species:
just the abiotic (ABIOT) or just the biotic (BIOT)
predictor variables, or the abiotic and biotic predictor sets
combined (FULL). Each model was calibrated using
different types of species responses (PA and BA) and
BIOT and FULL models using different biotic predictors
(AB, AB_L and LAI_L).

We built GLMs with logit links (assuming a binomial
distribution) followed by both backward and forward
stepwise variable selection based on AIC (Akaike’s informa-
tion criterion, Akaike 1974) and BIC (Bayesian information
criterion, Schwarz 1978). Here, we only report AIC-based
results because both criteria led to the same models, likely
because of the large sample sizes. For proportional response
variables (BA- and AB-models) we used weighted GLMs to
account for the total number of tree individuals and stand
basal area of all trees per plot, respectively (Dalgaard 2002).
For binary response variables (PA-models) no weights were
used. Predictors were entered both as linear and quadratic
terms to allow for nonlinear responses. For model calibra-
tion we used tree species data from NFI_1 from plots
intersecting with NFI_2 (i.e. NFI_1c).

Model fit was evaluated by the adjusted D2 (adj.D2)
following Weisberg (1980) for each of the selected species, a
measure that adjusts the deviance explained (‘‘deviance’’ is
the variance in likelihood methods; D2 ) by the number of
fitted regression parameters and the number of observa-
tions. To partial out the deviance explained by the abiotic
and biotic predictor sets, we followed earlier work using
GLMs (Lobo et al. 2001, Zimmermann et al. 2007). The

FULL
unexplained deviance

y   = B I O T A B I O T

VJFVBF VAF

Figure 2. Variance partitioning concept. BIOT: deviance explained
by biotic predictor set; ABIOT: deviance explained by abiotic
predictor set; FULL: deviance explained by both biotic and abiotic
predictor sets; VBF: alone contribution to deviance explained by
biotic predictor set; VJF: joint contribution of both predictor sets;
and VAF: alone contribution of the abiotic predictor set. Adapted
from Legendre (1993).
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contribution of each set of predictors was estimated by
subtracting the adj. D2 of the opposite set of predictors
from the FULL model, so that VBF�VFULL�VABIOT, and
VAF�VFULL�VBIOT. VBF and VAF are the pure contribu-
tions of the biotic and abiotic predictor sets to the total
deviance explained, while the joint contribution (VJF) of the
two predictor sets was calculated as VjF�VFULL�
(VABIOT�VBIOT). In rare cases, VJF may become negative
as a result of opposing effects of the two sets of predictors in
the FULL model (Legendre 1998).

Partial adj.D2 values were then further evaluated to test
whether the pure and joint contributions to the adj.D2

followed patterns that matched species groups according to
their traits. We used the Mann�Whitney U test and the
Kruskal�Wallis test to compare the effect of traits classified
into two and three groups, respectively.

In addition to the variance partitioning, we evaluated
model accuracy internally by 10-fold cross-validation
(Venables et al. 2002) and externally by testing the models
against the NFI_1 plots that were not part of NFI_2 (i.e.
NFI_1e). We used Cohen’s kappa (Cohen 1960) and area
under the receiver characteristic curve (ROC) (AUC;
Fielding and Bell 1997) for models calibrated with binary
response variables (PA-models). For models calibrating
proportional responses (BA-models) we used mean absolute
error (MAE, Voltz and Webster 1990), root mean square
error (RMSE, Voltz and Webster 1990) and the coefficient
of determination, R2 (Menard 2002). All data was prepared
and analyzed using R (R Development Core Team 2008)
and ArcGIS 9.2 (ESRI 2006).

Results

Model qualities using different types of biotic
variables

The explicit inclusion of biotic predictors improved model
fit (Table 3). However, model quality varied among tree
species, chosen response variable and selected biotic
predictors. Since the amount of shade (LAI_L) was never
significant, we did not consider it further. The explained
deviance was significantly lower for presence-absence
models (PA) than for proportional basal-area models (BA,
paired t-test, pB0.001; Table 3).

For presence-absence models the accuracies of the two
partial models (ABIOT and BIOT) were similar, but
significantly exceeded by the FULL model (paired t-test,
pB0.001 and see Table 4). Further, model accuracies as
estimated with 10-fold cross validation and external valida-
tion on NFI_1 data not used for model calibration
(NFI_1e) did not differ significantly, which indicates that
we obtained stable models with low bias (Supplementary
material Appendix 3). For the proportional basal-area
models MAE was similar for the two partial models, but
significantly smaller for the FULL model (paired t-test, pB
0.001 and see Table 6). However, for most modeled tree
species MAE and RMSE differed substantially, indicating
large variance in individual errors in the sample (Supple-
mentary material Appendix 4). Likewise, model quality (R2)
was similar for the two partial models, but higher for the
FULL model. For these proportional models, accuracies

estimated by 10-fold cross validation and by external
validation using NFI_1e data did not differ significantly.

When comparing the three types of biotic predictor
variables, we found that species-specific relative abundances
(AB) explained the most deviance in fitted models (Table 5).
Relative abundances of large individuals (AB_L) explained
considerably less deviance (paired t-test, p�0.001; Table 5)
and the amount of shade as measured by LAI (LAI_L) failed
to explain patterns. Model accuracies for models with
relative abundances were similar to models with relative
abundances of large individuals in terms of errors (MAE,
RMSE), but were higher in terms of model quality (R2,
Table 6). In general, models with relative abundances of
large individuals had similar MAE for the two partial models
and the FULL model. However, their RMSE was highest for
the BIOT model, lower for the FULL model, and lowest for
the ABIOT model, indicating large variance in individual
model errors (Table 6). Model quality (R2) was highest for
the FULL model, lower for the ABIOT model and lowest
for the BIOT model. Model accuracies taken from 10-fold
cross validation were not significantly different from external
validation using NFI_1e data.

When proportional basal area was the response, the
deviance explained by individual predictors within the
ABIOT and BIOT groups varied considerably among
species. Degree-days was generally the strongest ABIOT
predictor, while Picea abies had similar strength and was the
strongest BIOT predictor (Table 7). The other tree species
generally declined with increasing abundance of Picea abies,

Table 3. Deviance explained (adj. D2) for ABIOT, BIOT and FULL
models for PA and BA responses and species-specific relative
abundances as biotic predictors. Bold face indicates the model
with the highest fit.

Species ABIOT BIOT FULL

PA BA PA BA PA BA

Abies alba 0.18 0.19 0.23 0.40 0.40 0.61
Acer pseudoplatanus 0.11 0.10 0.15 0.25 0.26 0.41
Betula pendula 0.25 0.36 0.20 0.34 0.35 0.51
Fagus sylvatica 0.26 0.26 0.27 0.48 0.47 0.65
Fraxinus excelsior 0.18 0.20 0.19 0.32 0.34 0.49
Picea abies 0.19 0.25 0.20 0.44 0.36 0.59
Pinus cembra 0.62 0.71 0.38 0.51 0.65 0.75
Pinus sylvestris 0.19 0.25 0.14 0.29 0.31 0.48
Quercus petraea 0.23 0.29 0.20 0.33 0.37 0.54
Quercus robur 0.24 0.28 0.12 0.21 0.31 0.41
Sorbus aria 0.12 0.15 0.09 0.16 0.17 0.29
Mean 0.23 0.28 0.20 0.34 0.36 0.52
Stdv 0.14 0.16 0.08 0.11 0.12 0.13

Table 4. Mean model accuracy among species (Kappa, AUC) of
ABIOT, BIOT and FULL models calibrated with PA data as species
response and species-specific relative abundances as biotic pre-
dictors. Model accuracy was derived by 10-fold cross validation
(CV) and external validation on NFI_1e.

10-fold CV External validation

Kappa AUC Kappa AUC

ABIOT 0.2490.12 0.8290.07 0.2390.12 0.8190.07
BIOT 0.2290.14 0.8090.05 0.2290.13 0.8190.05
FULL 0.3690.18 0.8990.05 0.3590.18 0.8990.04
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although the relationship was unimodal for Abies alba and
Pinus sylvestris (Table 7).

Variance partitioning of biotic and abiotic predictors

We report variance partitioning as applied to models with
proportional basal areas as response and topo-climatic and/
or relative abundance as abiotic and biotic predictor sets,
respectively, because these were the predictors that best
describe tree distributions. The pure contribution of abiotic
(VAF) and of biotic (VBF) predictors to explanation of
model deviance differed among species (Fig. 3A). Across
species, the biotic contribution (0.2590.12) was larger
than the abiotic contribution (0.1890.03), and the joint
contribution (VJF) was comparably small (0.0990.14).
When accounting for species traits, species adapted to
undisturbed low-stress environments (C, CS, CR, CSR)
showed significantly higher contributions to explained
deviance from biotic predictors than do species adapted to
disturbed or stressful environments (R, S, SR; Mann�
Whitney U test, p�0.04; Fig. 3B). Further, species with
medium to long seed dispersal distances (avg.�100�
200 m) tended to have larger contributions to explained
deviance from biotic predictors than species with short seed
dispersal distances (avg.B25 m; Mann�Whitney U test,
p�0.17; Fig. 3B). Models of species with shade-tolerant

juveniles had significantly larger contributions from biotic
predictors than did models of species with shade intolerant
juveniles (Mann�Whitney U test, p�0.004; Fig. 3B).
A similar, but non-significant tendency was found from
analyzing the effect of adult shade tolerance (Mann�
Whitney U test, p�0.12). Further, models of dominant
species that occur frequently in a landscape showed
significantly higher contributions to the deviance explained
from biotic predictors than did models of dominant and
subordinate species that demonstrate infrequent occurrence
(Kruskal�Wallis test, p�0.04; Fig. 3B). Abiotic and
joint contributions did not differ significantly within
characteristic species groups (Mann�Whitney U test and
Kruskal�Wallis test, all p�0.27).

Discussion

Biotic predictors and model quality

We find that biotic variables considerably improved
predictions of tree species distributions in Switzerland,
with their effect being largely independent of abiotic topo-
climatic factors. Several previous studies have extended
SDMs by including biotic predictors (Rouget et al. 2001,
Leathwick 2002, Araújo and Luoto 2007, Heikkinen et al.
2007, Sutherst et al. 2007). Similar to our findings, these
studies generally demonstrate improved predictions when
adding biotic predictors. For instance, the abundance of
Nothofagus species in New Zealand is dependent on the
presence or absence of their congeners (Leathwick 2002),
while presence of host plant species is an important
occurrence predictor for butterfly species in Europe
(Araújo and Luoto 2007). Some owl species appear to
facilitate the presence of other owl species in Finland
(Heikkinen et al. 2007). In our study, we specifically
demonstrate that the statistical contribution of the biotic
predictors, which we assume reflect biotic interactions,
small-scale information on species co-occurrence and local
abiotic conditions (e.g. soil, nitrogen content), is largely
independent of the contribution of macro-climatic factors.
Our results also show that different ways of expressing
biotic variables can have a large influence on model
quality. Overall, biotic predictors have the potential to
elucidate important aspects of species distribution patterns
that are not easily represented by large-scale abiotic
predictors.

Table 5. Deviance explained (adj.D2) for ABIOT, BIOT and FULL
models for BA responses and species-specific relative abundances
(AB) and species-specific relative abundances of large trees (AB_L)
as biotic predictors. Bold face indicates the model with the highest
fit.

Species ABIOT BIOT FULL

AB AB_L AB AB_L

Abies alba 0.19 0.40 0.11 0.61 0.33
Acer pseudoplatanus 0.10 0.25 0.06 0.41 0.15
Betula pendula 0.36 0.34 0.24 0.51 0.44
Fagus sylvatica 0.26 0.48 0.11 0.65 0.36
Fraxinus excelsior 0.20 0.32 0.10 0.49 0.31
Picea abies 0.25 0.44 0.31 0.59 0.44
Pinus cembra 0.71 0.51 0.38 0.75 0.72
Pinus sylvestris 0.25 0.29 0.30 0.48 0.53
Quercus petraea 0.29 0.33 0.12 0.54 0.36
Quercus robur 0.28 0.21 0.09 0.41 0.33
Sorbus aria 0.15 0.16 0.14 0.29 0.26
Mean 0.28 0.34 0.18 0.52 0.39
Stdv 0.16 0.11 0.11 0.13 0.15

Table 6. Mean model accuracy (MAE, RMSE, R2) of ABIOT, BIOT and FULL models calibrated with BA data as species response and species-
specific relative abundances (AB) and species-specific relative abundances of large trees (AB_L) as biotic predictors. Model accuracy was
derived by 10-fold cross validation (CV) and external validation on NFI_1e.

10-fold CV External validation

MAE RMSE R2 MAE RMSE R2

ABIOT 0.0890.09 0.5790.87 12.52911.06 0.0890.09 0.4790.91 11.2199.44
BIOTAB 0.0790.07 0.8691.35 14.09913.72 0.0790.07 0.8991.47 13.22913.51
BIOTAB_L 0.0890.09 0.9691.56 6.2597.46 0.0890.10 0.9791.76 5.1696.69
FULLAB 0.0590.05 0.7591.11 30.13920.77 0.0590.05 0.7191.13 28.98920.99
FULLAB_L 0.0790.08 0.8691.33 19.22914.01 0.0790.08 0.8591.42 17.54912.16
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Partitioning the biotic and abiotic predictor
contribution

In our analysis of the respective contributions of biotic and
abiotic factors in SDMs, we find that the joint contribution
of both predictor sets is consistently small (except for Pinus
cembra). This indicates that biotic predictors are largely
independent of the abiotic predictors in their explanatory
capacity. Abiotic predictors (topography and climate) may
reflect constraints of the fundamental niche of the tree
species, and hence, are expected to determine large-scale
species ranges (Pearson and Dawson 2003). In contrast,
small-scale distribution patterns are expected to be more
strongly influenced by biotic processes such as competition
or facilitation, as well as land-use, stochastic processes and
local abiotic conditions (micro-climate, soil, nitrogen
content). The largely unique influence of abiotic and biotic
predictors in our study probably reflects that the small-scale
processes are relatively independent of the effects of large-
scale topo-climatic gradients. The main exception occurs
with Pinus cembra, a species adapted to relatively extreme
(cold) habitats. Abiotic predictors, with no independent
contribution of the biotic predictors, constitute the main
range determinants for this species. Furthermore, the large
joint contribution of the two predictor sets for P. cembra
indicates that influence of biotic processes likely mediates
the influence of the abiotic environment. Notably,
P. cembra mainly occurs where it is too cold for strong
competitors such as Picea abies (cf. Table 7). As a
consequence of our findings, we expect the addition
of biotic predictors to improve the ability of species
distribution models to predict small-scale distribution and
abundance patterns, but not necessarily to produce a clear
improvement in the prediction of species large-scale ranges.

Biotic predictor component and species traits

We find clear differences in the relative contribution of
abiotic and biotic predictors when species are grouped
according to traits. With the exception of the hypothesized
effects of biotic predictors on models of species belonging to
different shade tolerance groups and CSR-strategies, the
data support our hypothesis regarding effects of biotic
predictors on species that differ in their traits. The tree
species whose modeled distribution are most strongly
influenced by biotic predictors are adapted to undisturbed
low-stress environments (competitive strategy), shade-
tolerant as juveniles and adults, frequent dominants, and
tend to have long distance seed dispersal. All these traits
point to late-successional species with high competitive
ability. A principle exception is the dispersal distance
relationship where the effect from the transition from intra
to interspecific interactions with distance from parent may
be overriding. Thus, our results support the idea that
models of species typified by occurrence in stressful or
disturbed environments seem to profit less from biotic
predictors, despite these species may be outcompeted
during succession by species with a higher competitive
ability, and thus, occur less often in abiotically suitable
habitats due to negative biotic interactions.Ta
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Our results are in line with the assumption of Grime
(1979), where species experience stronger biotic interactions
in less disturbed, productive environments compared to
more disturbed, stressed environments. For trees, biotic
interactions are thus more likely important for competitive,
shade-tolerant species, which primarily occur in late-
successional, productive environments, where competition
plays a strong structuring role, while they are less likely
important for ruderal and stress-adapted, shade-intolerant
species, which mainly occur in low-competition environ-
ments. In terms of species, we find that the strongest effects
of biotic variables on tree species distributions were for the
late-successional species Picea abies and Fagus sylvatica
(Table 7). We caution that our correlative analyses detect
only the shape of the mutual response, but not the direction
of the effect. If one species imposes e.g. shade and thus
reduces the abundance of another species, then the two
species show a correlation. If two SDMs are fitted, where
each species is once the dependent and once the predictor
variable, we would find negative response directions for
both. Accordingly, we interpret the large contribution of
the biotic predictor set if strong competitors are used
as dependent variables such that these competitive species
impose stronger competitive control over others that we
have added as predictors. This inversion of the influence
was much lower if early-successional, and shade-intolerant
species are considered. Experiments would be needed to
detect causal relationships.

Predictive power of different biotic predictor sets and
single predictors

In our analysis, use of presence-absence (PA) as a response
variable in the models results in less explained deviance than

do models using proportional data on basal areas (BA). This
may indicate that our estimated realized niche of a species is
better characterized with species performance data than
with simple occurrence data, which is in line with the
original definition of the realized niche based on net growth
rate of populations (Pulliam 2000). Further, despite our
original expectation that larger trees directly influence the
occurrence of smaller trees since small trees are likely to
suffer or die from competition by larger trees, species-
specific relative abundances of large individuals (AB_L)
explained significantly less deviance than did AB.
If the species-specific component is removed and only
overall shading of large individuals (LAI_L) was addressed,
hardly any deviation is explained. This is surprising since
leaf area and not biomass is assumed to be the underlying
mechanism behind the self-thinning rule (Westoby 1984).
Possibly, the method needs to be improved to accurately
portray the influence by shading on target trees, i.e. leaves of
trees from the same species are likely at least as important
for shading effects as are the effects of shading from leaves
of other species.

Degree days (5.568C threshold) and moisture index from
March to August were the best single predictors of the abiotic
predictors set. These factors are important for species that
grow primarily under cold (Pinus cembra) or dry (Quercus-
petraea and Q. robur) conditions. In contrast, models of
Abies alba, Picea abies and Fagus sylvatica show the highest
impact by biotic variables (i.e. biomass of other species). As
mentioned above, we interpret this as competitive strength
of these three species compared to other species. The
inclusion of the presence/absence or abundance of additional
species as predictor variables need not reflect biotic interac-
tions. It may also represent consequences of forest manage-
ment, or simply the occurrence of co-varying distributions
between pairs of species that do not necessarily interact. For
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Figure 3. Graphical representation of variance partitioning results. (A) Partial deviance explained (adj.D2) by the two sets of predictors
for individual tree species. VBF is the pure contribution of the biotic set of predictors, VAF is the pure contribution of the abiotic set and
VJF is the joint fraction of both predictor sets. (B) Mean contributions of species adapted to undisturbed low-stress environments (C, CS,
CRS) and stressful environments (R, S, RS); species with medium to long seed dispersal distances (average dispersal distance of 100�
200 m) and short seed dispersal (average dispersal distance of 25 m); species with shade-tolerant juveniles and adults (values55) and
shade-intolerant juveniles and adults (values�5); and dominant species that occur frequently at the landscape and subordinate and
dominant species that occur infrequently.
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example, P. abies is dominant at high elevations and
naturally occurs less frequent at low elevations. However,
since it is commercially the most important tree species in
the central Alps, it is sometimes planted at low elevations.
Hence, biotic influences subsumed in this predictor may not
only contain the natural interactions between tree species,
but in some cases the effects of management. Finally,
deviance in co-occurrence may also represent unmeasured
or incompletely measured environmental deviance, notably
micro-environmental heterogeneity that might not be
captured by larger scale abiotic GIS layers. The direction
of the trend between the biotic predictor and the response
may indicate that species tend to occur in mixed stands or in
stands with only one dominant tree species. Unimodal
distributions, as seen in the responses of F. sylvatica and Abies
alba, reflect a tendency of a species to occur often in mixed
stands at intermediate densities.

Conclusion

Models are generally improved by representing other species
as predictor variables in the models. Species that reflect
interspecific facilitation, such as root symbionts, may be
beneficial for better understanding the small-scale drivers of
plant distribution. However, spatially explicit information
of fungal or bacterial symbionts is difficult to obtain.
Furthermore, to prevent overfitting, only few such predictor
species can be included in a model. Hence, even where data
are available, inclusion of these variables should be
contingent on prior ecological knowledge to avoid fitting
models with spurious interactions. Given the effects of
biotic variables on the modeled distribution of trees, it
seems unlikely that predictions for global warming at small
spatial scales (resolution or grain) are credible if they are
based solely on topo-climatic gradients. These predictions
for global change could be improved by including com-
munity information and seed dispersal or migration effects
(Engler and Guisan 2009). Further and more generally,
biotic interactions may not only be dependent on species
traits, but also on the position of sample locations along key
climatic gradients (temperature, moisture). Competition,
for instance, may be stronger towards the more favorable
growing conditions (Bertness and Callaway 1994, Brown
et al. 1996). These interactions may variably change in a
changing climate.
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